《发生认识论原理》第12章


种结构就清楚地分化了,我们于是就能把那些以不连续性和相似性或差别性(不同程度的等值)为基础的运演说成是逻辑数理运演,而把那些从连续性和邻近性产生的运演说成是“逻辑下”运演。因为,即便它们是同构性的,它们也属于不同“类型”,并且在彼此之间不存在传递性:第一类运演是从客体开始,并且把客体组合起来或予以序列化,等等,而第二类则是把一个有连续性的物体分开。在这两类运演之间是没有传递性关系的,正如苏格拉底的鼻子,尽管是他本身的一部份,但并不是象苏格拉底这个人一样是一个雅典人,希腊人或欧洲人,等等。
如果我们把注意转向量度的建构上,则这个在逻辑数理运演和“逻辑下”运演或空间性运演之间的同构性就显得特别引人注目。量度的出现与数的出现非常相似,只是因为下述事实,量度的出现在时间上略迟于数的出现,这个事实就是:元素的单位不是由元素的不连续性所暗示出来的,而必须通过把连续的东西分割开来才能建构成功,并且还必须想象这种分割能够转移到客体的其它部份去。这样,量度是作为分割和有顺序的位移的一种综合而出现的,人们可以根据先后出现的一些行为形式来一步一步地追寻这种艰难发展的各阶段。这种综合跟建构数概念时对归类和顺序关系的综合自然是紧密地类似的。只是在这个新综合的末期,通过把数直接应用于空间连续统一性上面,量度才被简化,但儿童仍然是首先要经过必要的逻辑下过程的(当然,除了给他现成的单位时才不是这样)。
现在让我们从这许多作为标志具体运演阶段头一个水平的成就转到与因果性有关的成就上去。正如前运演水平的因果性最初是心理形态学地把活动格局归因于客体,然后把活动格局分散成为一些可以客观地表现出来的功能一样,到了七岁到八岁阶段,在某种意义上说也存在着把运演归因于客体的情况,从而使客体上升到算子的地位,其活动现在能以一种多少是理性的方式组合起来。因此,在问题是传递运动的地方,运演的传递性就牵涉到一个作为中介的“半内部的”传递概念:被试虽则继续坚持认为,比如说,是在移动中的客体使得一行被冲击客体的最后一个产生移动,因为在这一行中间的客体发生了轻微的位移,并且互相推动,然而他同时却又设想有一个“冲力”,一个“力流”等等通过这些中间物。在处理两个重物间的平衡问题时,儿童将根据补偿和等量来作出考虑,从而把一些既是加法又是减法的组合归因于客体。简言之,人们可以说这是关于因果关系的运演的开始;但这并不是说以前所描述的运演是完全自主地形成的,只是在以后才归因于现实而已。相反,儿童作出因果解释时,常常是在进行运演性综合的同时,又将这综合归因于客体。这两者的同时发生是由于反身抽象所导致的运演形式同依靠简单抽象而从实物经验中抽出来的材料——这种材料能够促进(或阻碍)逻辑结构和空间结构的形成——这两者之间的种种不同的相互作用而实现的。
最后讲的这一点把我们引到了这个水平所固有的极限去,或者说引到了一般具体运演所特有的极限去。与十一岁到十二岁所达到的,我们称之为形式运演——这些运演的特点是有可能通过假设来进行推理,并要求把形式的联结和内容的真实性分别开来——的那个阶段截然不同,“具体”运演是直接与客体有关的。因此它似乎同前运演水平一样纯粹是主体作用于客体的问题,所不同的是现在这些活动(或者说在客体被看成因果性算子时被归因于客体的那些活动)被赋予了一种运演的结构,也就是说,它们可以以一种传递和可逆的方式组合起来。情况既然如此,就容易了解,某些客体或多或少是容易适合于这种结构的,而另一些客体则不是如此;这意思就是说,形式迄今还没有同内容分开,同一些的具体运演将适用于不同的内容,只是在时间先后上有所不同。因此,就重量来说,量的守恒,系列化等等,甚至等量的传递性,都只有将近九岁到十岁时才能掌握,而七到八岁时则不能。在七、八岁时只能掌握比较简单的内容。原因就在于重量是一种力,重量的因果关系的动力学特性对于这种运演的结构化是一种阻碍。然而,当运演的结构化确乎出现时,儿童就使用他在七岁到八岁时用于守恒、序列化或传递性的同一些方法和同一些论据了。
具体运演结构的另一个基本的局限性在于它们的组成是一步一步进行的,而不是按照任何一种组合原则。这就是“群集”结构的本质特征,这种结构的一个简单例子就是分类。如果A、B、C等等是一些交互重叠的类,A′、B′、C′是它们的补余,则下面这些等式都是能够成立的:
(1)A+A′=B;B+B′=C;等等
(2)B-A′=A;C-B=B′;等等
(3)A+0=A
(4)A+A=A,由此得出A+B=B①;等等
(5)(A+A′)+B′=A+(A′+B′)②
但:(A+A)-A。A+(A-A)
因为:A-A=0,而A+0=A③
①原文为A+B=B′有印刷错误,故改。——译注
②原文为(A+A′)+B′=A+(A′+B)亦系印刷错误,故改。——译注
③A+A-A=A-A=0而A+(A-A)=A+0=A所以这两个并不相等。——译注
在这个情况下,如A+F′这样一个非邻接的组成就不会产生一个简单的类,而其结果是:(G-E′-D′-C′-B′-A′)④。再者,这就是一个动物学分类的群集的情况,在这里“牡蛎+骆驼”是不能以别的方法结合起来的。虽然数的综合似乎应该可以避免这些局限性——因为整数⑤跟零、负数一起形成一个群,而不是一个“群集”,——然而,具体运演阶段第一水平的特点之一就是:即便是数的综合也只能“一步一步地”发生。格雷科证明,自然数的构成只是依照我们可以称之为一个逐步的算术化的过程而产生的,这种算术化的各阶段的特点大致可用1—7、8—15、16—30等等数来描述。超出了这些极限——超出这些极限的进展是相当慢的——数就仍然只包含有归类的方面或序列化的方面,只要这两个特点的综合还处于未完成状态之下就一直会是如此(《研究报告》第十三卷)。
④由于A+A′=B,B+B′=C,C+C′=D,D+D′=E,E+E′=F,F+F′=G所以A+F′=A+(G-F)=A+G-(E+E′)=A+G-E′-(D+D′)=A+G-E′-D′-(C+C′)=A+G-E′-D′-C′-(B+B′)=A+G-E′-D′-C′-B′-(A+A′)=G-E′-D′-C′-B′-A′
⑤这儿的意思应该是“正整数”才符合逻辑,后面的负数也是负整数的意思。
五、具体运演阶段的第二水平
在这个子阶段(将近九岁到十岁),除第一水平已经达到其平衡的那些不完全的形式之外,又达到了“具体”运演的一般平衡。但是进一步看,正是在这个阶段,具体运演的性质本身所特有的缺陷开始在某些方面,尤其是在因果关系方面表现了出来;这些新的不平衡状态在某种意义上说就肇始了一种完全的再平衡,这种再平衡是下一阶段的特点,它的迹象甚至在这个水平上有时也能看到。
这个子阶段的新异之处在逻辑下关系或者说空间关系的领域内表现得特别明显。从七岁到八岁以后,在对自身是同一的客体——其对主体的地位已有所改变——的看法和观点的变化方面形成了某些运演。但是仅在将近九岁到十岁时,人们才能谈到对客体集合体(如座落在不同地方的三座大山或建筑物)的观点的协调。在这个水平上,一维、二维或三维空间的量度也导致自然座标的建构,把它们联系成为一个完整的系统。因此,儿童只是在将近九岁到十岁,才能预言在一个向一边倾斜的容器内水的表面是水平的,或者预言靠近一个斜面的一根铅线是垂直的。在所有这些情况下,所牵涉到的是除了只在第一个子阶段存在的形象内的联结之外,还有形象间的关系的建构;或者换一种说法,就是与简单形象相对立的空间的加工建构。
谈到逻辑运演,我们想提出如下一些观察结果。七岁到八岁时,被试不但能建构加法结构,而且能建构乘法结构:如同时按两个标准分类的二因素表
小说推荐
返回首页返回目录