《发生认识论原理》第19章


沓橄蟮穆呒Ь椋ɡ缥搜橹?+3=3+2而把客体排成顺序,或者改变顺序)。这样,说运演具有所谓“同语反复”特征似乎就是有充分根据的了,如果我们把“同语反复”特征只理解为某些运演具有“永真”的性质的话:但是“永真”决不能归结为同一性,因为它可以从一个既是同一化过程又是分化过程的组合体系中产生出来。而且,每个形式化了的体系都是以公理为依据的,选择公理的三个标准是:这些公理必须是充分的、前后一致的、和相互独立的,这也就是说,在彼此的关系方面,它们不能是同语反复的。
如果逻辑不仅是语言的公理化,那末我们应不应当作出结论说,逻辑是把自然“思维”形式化呢?如果自然“思维”指的是主体有意识的思维,带有其直觉性和不证自明经验的话,那就一定得不出上述结论来;因为直觉和不证自明的经验在历史过程(贝尔纳斯)和个体发展过程中都是变动的,并不能成为逻辑的适当的“基础”。另一方面,我们可以越过那些可观察到的东西来尝试着建构结构,并不是从主体有意识地说的或想的什么来建构结构,而是从当他解决对他来说是新的问题时,他依靠他的运演所“做”的什么来建构结构。在这种情况下,我们就发现我们自己是在处理象INRC群这样的可以逻辑化的结构,这个群的存在是一九四九年我们观察儿童行为时发现的(参阅本书第一章第六节)。这样,如果我们从自然结构的特殊而有限度的意义上来理解自然“思维”,我们就可以把逻辑看作是这些结构的形式化,以及随后的超越这些结构,正如科学的算术形成“自然数”的一部分,而同时又以越来越有成效的方式去使自然数臻于完备。亚里士多德的逻辑提供了把自然结构和形式化再建过程连结起来的一个例子——一个十分说明问题的例子;因为它表明亚里士多德①没有意识到这些最初结构所能提供的一切可能性:他不知道关系逻辑和集结构的存在。因此,进行形式化所必需的、甚至是进行通常称为三段论法(这是直觉的不完全形式化的一个典型例子)所必需的反身抽象,是通过时间上缺乏衔接的方式而重新建成的,从而是一步一步地前进的;正是这个进程使所有后来的完整化成为可能。说逻辑就是自然运演结构的形式化从而就和下述观点十分一致,这种观点认为,公理化,正如我们在A部分曾经看到的,会产生一种专门化了的思维形式,从而获得它本身的自主性和特有的丰富性(关于问题A和B,可参阅《研究报告》第十四卷到第十六卷)。
①直译为斯塔吉拉(Stagira)城的那个人,即指亚里士多德。——译注
C。从自然结构的形式化跟自然结构心理发生学上的发展二者之间的关系这个观点来看,重提一下如下事实是很有启发的,即:尽管形式化有其独立性和威力,但现在已经证明它具有确定不移的局限性(参看戈德尔、塔斯基、丘奇、克利恩、图灵、勒文海姆-斯科莱姆等人的著作)。虽然这些局限性是可以替换的,因而是随着结构的向前发展而减少的,但它们在下列意义下仍然是真实的,即:非常彻底的形式理论,如果只根据它自身的体系,是既不能证明它本身的无矛盾性,也不能证明其所有定理的可判定性的,它还需要以“更强的”体系作为基础来作出这种证明。由于更强的结构只能跟在它以前的结构之后出现(例如,超穷算术之出现在初等算术之后),在阶梯式体系中最简单的结构又总是最弱的结构(在这里就是罗素的《数学原理》的逻辑对于初等算术的关系),我们觉得我们自己面临着两个看来多半与发生学的看法有联系的基本事实:(a)存在着把结构按其“强度”排列的阶梯式体系,(b)需要对结构作建构主义的处理,因为结构的系统不能正确地比喻为建立在其台基上的静止的金字塔,而只能比作其高度在不断地增加的螺旋体。
如果情况是如此,我们怎么能解释形式化的可以替换的局限性呢?我们猜想,形式化跟发生学的建构具有类似性,这种类似性提供了一个解答:形式和内容的概念在本质上是相对的,形式或形式化结构是不能达到一种完全的自主性的。在心理发展领域里,这是清楚的:感知运动结构对它们所调整的简单运动而言是形式,但对下一水平的内化了的和概念化了的活动而言则是内容;“具体”运演对上面这些活动来说是形式,但对十一岁到十五岁时已出现的形式化运演来说则是内容;再者,这些形式化运演对于在以后各水平上应用于它们的那些运演来说又只不过是内容了。同样地,在戈德尔所提出的例子中,初等算术是形式,它把类和关系逻辑包括进来作为其内容(数是归类和序列化的综合,见本书第一章,第五节),而初等算术本身作为可数的东西的幂,则是超穷算术的内容。
如果情况是这样,人们就会看到,形式必然是会有局限性的,这就是说,在没有整合到一个更全面的形式中去时,它不能保证自身的前后一致性,因为它的存在本身是从属于整个建构过程的,它只是这个过程的一个特殊方面。让我们举一个没有数那么专门的例子。在具体运演水平上,我们能在分类和序列化之间分析出某些隐含的关系来:在下述分类中,A+A′=B,B+B′=C,等等,把低级(这是与A′,B′,C′等等相对立的类)归到高级类中去的先后顺序,就是一个序列化过程:(A<B<C…);相应地,人们也能以同样方式把一个级数的各项组合起来(第一、二两项构成的这个类把第一项包括在内,第一、二、三三项构成的这个类,又把前两项包括在内,如此等等)。然而,只要INRC群尚未建构成,就不可能把类和关系这两个“群集”的集联合到一个其反演和互反性获得了协调的、唯一的形式化体系之中:因此只要它们还没有整合到一个“更强的”结构之中,它们的形式化就仍然是不完全的。
这些意见该已表明,在研究逻辑认识论的重要问题时把发生学的研究方法考虑进去,是不会有什么损失的,而且也许会大有所得。但是我们应该小心地把逻辑的认识论同逻辑学家的论证技术区别开来。在后者那里心理发生学显然是没有什么地位的。
二、数学的认识论
克罗内克把“自然数”称做上帝的恩赐,同时宣称其余都是人类活动的成果,是要用前科学的起源来予以说明的。但是他从来没有真正搞清楚,这些人类成果——这是能够在“原始”社会中,在儿童身上,以及在上帝所创造的其他生物(不要忘了奥托·苛勒的鹦鹉)身上进行研究的——在性质上跟数学家们自己较近的工作颇为类似。因此,康托尔作为基础用以建立集合论的那种一一对应关系我们从远古年代的物物交换(用一个物体换取另一个物体)中就已经知道了,一一对应关系的形成在儿童甚至在较高级的脊椎动物身上都是可以详细考察到的。布尔巴基的三个“矩阵结构”,其初级的但又是清晰的形式可以在儿童的具体运演阶段上观察到(《研究报告》第十四卷)。麦克雷恩和爱伦堡的“范畴”概念从“组成性功能”的水平(见本书第一章第Ⅲ节)上起就可以在儿童身上应用:这种应用无疑地是在琐碎的意义上讲的,但它表明了范畴的基本结构(有其蕴含的功能和有限组合的一类客体的基本结构;见《研究报告》第十三卷)的普遍性。
数学的认识论有三个传统的主要问题:数学虽然是奠基于极少数内容相当贫乏的概念或公理之上,为什么却这样富有成效呢;尽管数学具有建构特性,这可能成为不合理性产生的根源,但为什么数学仍然具有必然性从而保持着恒常的严格性呢;尽管数学具有完全是演绎的性质,为什么数学跟经验或物理现实是符合一致的呢?
A。在解决了对逻辑作同语反复的解释之后,我们将把数学的富有成效性视为是当然的。无论如何,数学上的同语反复概念纯粹是一种字面上的假设。它之得到公认还是没有能解释清楚下述这件事情到底是怎么回事,即经过了二十五个世纪之久,为什么仍然有可能以无穷无尽的料想不到的方式来论述同样一些东西呢。这是一个历史评论的问题,同样也是一个心理发生学的问题:在数学研究的过程中相继产生的一些新形式既不是什么新发现,因为它们是跟以前未曾给出?
小说推荐
返回首页返回目录