理可信的程度。我们一定不能说如果h′是所说的那个人所知道的某个真的
命题,但不及h,并且如果p/h=α′,那么就那个人来说,p 具有可信度α′;它对于一个可以用h′表示他的全部有关知识的人来说,将只具有这种
可信度。可是这一切凯恩斯无疑是会全部承认的。事实上,反对理由只是针
对叙述上的不够严密,而不是针对这个理论的基本要点。
一个更为重要的反对理由是关于我们认识p/h=a 这类命题的方法。我现
在并不是先验地论证我们不能认识它们;我只是探讨我们怎样才能认识它
们。我们可以看到如果我们不能给“概率”下定义,那么就必然有不能证明
的概率命题,因此如果我们要承认这些命题,我们就必须把它们当作我们的
知识的前提的一部分。这是所有以逻辑方式表达的系统的一个共同特点。每
个这类系统必然要从一组未下定义的名词和未加证明的命题开始。显然一个
未下定义的名词不能在一个推论出来的命题中出现,除非它已经在未加证明
的命题中至少有一个命题中出现过,但是一个下过定义的名词却不需要在任
何未加证明的命题中出现。例如,只要人们认为算术中有未下定义的名词,
那么就必然也有未加证明的公理:皮阿诺有三个未下定义的名词和五个公
理。但是如果我们给数和加法下逻辑的定义,算术就不需要在逻辑的未加证
明的命题之外再有什么未加证明的命题。所以就我们所研究的实例来说,如
果我们能给“概率”下定义,那么凡是出现这个字眼的命题可能都可以通过
推论得出;但是如果不能给它下定义,那么如果我们想要知道有关它的知识,
就必须有一些包含这个字眼的命题,而我们认识这些命题并不需要外来的证
据。
凯恩斯拿什么样的命题作为我们概率知识的前提这一点并不十分清楚。
我们直接认识具有“p/h=α”这种形式的命题吗?如果概率不能以数值计
算,那么α是什么东西?或者我们只认识等式和不等式,即p/h<q/h 或者
p/h=q/h?我认为后老是凯恩斯的看法。如果这样的话,这门学科的基本事
实就是三个而不是两个命题的关系:我们应该从一种三元关系开始
P(p,q,h),
意思是说:在已知h 的条件下,p 的概率小于q 的概率。然后我们也许
可以说“p/h=q/h”。。 的意思是“既不是p(p,q,h),也不是p(q,p h)”。
我们应当假定当h 不变时,对于p 和q 来说,P 是不对称的和传递的。(,) 凯恩
斯的无差别原理如果被我们接受的话,它将使我们能够在某些外界条件下证
明p/h=q/h。就凯恩斯认为正确的限度来看,概率计算可以在这个基础上建
立起来。
上面的等式定义只有在p/h 和q/h 可以比较时才能采用;如果(象凯恩
斯认为可能那样)其中一个既不大子另一个,而它们又不相等,我们就必须
抛弃这个定义。我们可以通过关于两个概率一定可以比较的外界条件的一些
公理来解决这个困难。如果它们可以比较,那么它们就位于从0 到1 之间的
一条路线上。在上面的“p/h=q/h”。。 的定义的右边,我们就必须补充说p/h
和q/h 是“可以比较的”。
让我们现在重新叙述一下凯恩斯的无差别原理。他所要做的是建立使
p/h=q/h 成立的外界条件。他说这种情况将在两个条件(充分的但却不是
必要的)得到满足的情况下发生。设为( )并且为( );那么对于
p j aq j b
a和来说,一定是对称的,而( ), ( )一定是“不可分的”。h j a j b
b
如果我们说A 对于a 和b 来说是对称的,我们的意思大概是说如果h 具
有f(a,b)这种形式,那么
f(a,b)=f(b,a)。
这种情况特别发生在f(a,b)具有g(a),g(b)这种形式时,这也
就是当h 提供的关于a 和b 的知识是由分立的命题所组成,其中一个命题是
关于a 以的而另一个命题是关于b 的,并且两者都是一个命题函项的值的时
候的情况。
我们现在设=( ),q=j bq=j b
(), (), bh=(, )。
pf 我们的公理的大意一定是(a) 在一种适当的规定条件下,它使得()和ja(a) j
(b)的交换不产生任何差别。这就得出
(,)=() (,)假定()和()
j() a /f ab j b /f ab j a j b
对于f(a,b)来说是可以比较的话。这个结果得自这个一般原理
j() / ψ( )= j( )ψ( );
aa bb
也就是说,这个结果得自这个条件:概率依靠的不是个别主词而是命题
函项。顺着这些想法,我们似乎有希望得出也许比凯恩斯的原理更加不证自
明的无差别原理的一种形式。
为此让我们研究一下他的不可分性的条件。凯恩斯把“( )是不可
j a
分的”定义为有两个项目和使得“j ”和“jb”或“j ”具有相
bc
同的意义,并且jb和jc不能同(c) 时为真,(a) 而jb,jc在已知的情况下
h
都是可能的。我认为这并不完全符合他的原意。我认为如果我们假定a 和b
和c 是类,其中a 是b 与c 的和,我们就更加接近他的原意。在这种情况下,
j一定是一个以类为其项目的函数。例如,设是靶子上一块面积,分为和bc
a
两部分。设“j a ,并且“ψ”是“a
a”是“上面被打中的某一点”a
上面被瞄准的某一点”。那么ψ a 就上面的意义来说就是可分的,并且我们
得不出
b/ b
ja/ ψa=j ψ,
a/ a ψ。
因为显然j ψ 大于jb/ b
但是关于我们的前一个条件,即h 对于a 和b 来说应该是对称的,并不
是充分的条件这一点我们还不清楚。因为现在h 包括“b 是a 的一部分”这
个命题,而这个命题并不是对称的。
凯恩斯讨论了ja/ ψa=jb/ ψ 的条件,并且给我们提供了一个失败
b
的例子,在这个例子ψx=x 是苏格拉底。就这个实例来说,不管ψx 可能
是什么,
j(苏格拉底)/ ψ(苏格拉底)=1
而如果心不是苏格拉底,ψb/ψb=0。为了排除这种情况,我立下一条规定,
即“ψx”一定不包括“a 在内。举一个类似的例,设ψx=x 杀死a,ψx=x
住在英国。那么ψa/ψa 就是a 的自杀的可能性,如果a 是英国人的话,而
ψx/ψx 一般来说就是a 披某个名叫x 的英国人所谋害的可能性。显然在多
数情况下,ψa/ψa 大于ψb/ψb,因为一个人杀死自己的可能性比杀死另外
一个任意选择的人的可能性要大。
这样,最重要的条件看来似乎是“ψx”一定不包括“a 或“b”在内。
如果这个条件被满足,我就看不出有任何理由得不到
b/ b
ja/ ψa=j ψ。
我的结论是,无差别原理真正断言的是命题函项之间而不是命题之间的
一种关系。这就是“一次任意的选择”这类说法所表示的意思。这个说法所
表示的意思是:我们要把一个项目仅仅当作一个满足某一命题函项的项;所
以我们说的话实际上只是关于命题函项而不是关于命题函项的这个或那个值
的。
然而还存在着某种为我们关心的重大问题。已知两个命题函项jx和ψ
之间的一种概率关系,我们可以把这种关系当作ja和ψ之间的一种关系(x) ,只要“jx和“ψ”不包括“”在内的话。这是在xa 概(a) 率的全部实际
应用上一个必要的公理,因为这样一来我们所要研究的问题才是个别的事
例。
我的结论是:凯恩斯的概串论的主要形式上的缺点在于他把概率当作命
题之间而不是命题函项之间的一种关系。我认为应用到命题上面属于这个理
论的用途而不属于这个理论本身。
第六章可信度
A。 通论
认为全部人类知识在不同程度上都是可以怀疑的看法是从远古就有的;
怀疑论者曾经主张过这种看法,在柏拉图学园的怀疑时期这种看法也流行一
时。莎土比亚这样挪揄过最可笑的极端的怀疑主义:
不相信星辰是火团,
不相信太阳的运转。
在他写诗的时候,哥伯尼早已对后一句话提出了怀疑,不久以后开普勒
和加里略也提出了更为有力的怀疑理由。前一句是荒谬的,如果“火”是按
照化学中所讲的那种意思的话。许多看来无可置疑381 的事物现任已经被人
看出很可能是错误的。科学
小说推荐
- 知识型仙人
- 作者:我不是伪君子第一章 灵婴降世中国中部一个不知名的小地方有一座低矮的山丘,其上绿树成荫,灌木茂盛,奇花异草无数,更有许多说不清名字的飞禽猛兽。然而远远望去,此山丘却非绿色,而是呈现出奇异的青色。此地又属平原,难得见山,附近的人就把这座土丘唤作山,名为青云山。青云山下有一个大约方圆三十里的小镇,名
- 最新章:第233章
- 超全的驾驶知识
- T形路口,请谨慎驾驶一些司机朋友对T形路口行车往往存在着模糊的认识。前几天笔者就遇到这样惊险的一幕:一辆桑塔纳轿车自南向北高速驶入一个T形路口,正遇南北红灯,轿邓净衔猅形路口直行车辆不受红灯限制,于是速度不减,直冲进路口。这时,被放行的一骑自行车的男青年正好行到车道中间,轿车司机惊慌之中一个急刹车
- 最新章:第18章
- 世界知识
- 【由文】外交动态字数:3744 习近平分别会见来京出席中俄印外长第十三次会晤的印度外长斯瓦拉吉、俄罗斯外长拉夫罗夫习近平会见斯瓦拉吉 2月2日,国家主席习近平在人民大会堂会见印度外长斯瓦拉吉 习近平请斯瓦拉吉转达对慕克吉总统和莫迪总理的亲切问候和良好祝愿。习近平指出,去年9月我访问印度期间,受到印度
- 最新章:第36章
- 知识殿堂
- 简介:带着一个星球的知识传承附身到普通的藏家小孩身上1主角名字为藏名2无爱情描写3随身流4科技知识等全是瞎编的58042第1章 吉珠)夏季,是普马乡村民一年中最期待的季节。一到了夏天,气温上去了,小孩子们可以只套件薄薄的汗衫,就能疯玩一整天。对于孩子们来说,玩耍的宝地非后山莫属。后山又叫雀儿山,山中
- 最新章:第414章
- sex知识讲座1
- 「他疯狂地插入、一次又一次、饥渴而粗暴的挺进来,当初的热情,谁知道现在完全翻脸不认帐,还说大家只是玩玩,不必当真,这不是欺人太甚嘛」医学上有没有办法让这个人现出原形呢 办法是有,但有此惨痛经验的学员们可能会很失望 因为由权威医学期刊「刺络针」研究指出,有些人对于性茭后6~12小时之内所发生的事情会毫
- 最新章:第4章
- sex知识讲座4
- 人体大餐、魔鬼屌套、肉欲横流SM让激|情狂飙-道具篇有时候失去激|情的Xing爱关系,需要用点道具来增添Xing爱情趣,有些刺激可以经由想象来达到(例如角色扮演,有些则是在最后大军压境的时候,在你的那话儿上,套上一些辅助品,有增长的、强化磨擦效果的、持久的等等发挥临门一脚的意外功能,最终目的是为了让
- 最新章:第4章
- 股票基本知识
- 第一节 股票的概念与特征随着经济体制改革的深化,我国股票市场也不断地发展与完善,参与股市投资的投资者日益增多,股市投资已成为一种人们愿意承担其风险的理财手段,而股票自然而然也成为了人人关心的热门话题。股票到底是什么?股票是股份证书的简称,是股份公司为筹集资金而发行给股东作为持股凭证并借以取得股息和红
- 最新章:第36章
- 知识改变异界
- 《知识改变异界》作者:福如海东正文⒈第一章 奇怪的世界我不知道自己怎么来到这个地方,但我相信,我肯定已经死了。首先,这个地方没有白天,也没有黑夜,只有无尽阴霾的天空,滚滚浓云在上空缭绕,一直灰蒙蒙,阴森森的,还时不时吹过一阵阴风,把宁静的空间,吹出一声声嘶嚎。一望无际的大地上,没有一丝生机,就连脚下
- 最新章:第116章
- sex知识讲座2
- 如何找寻Xing爱指数破表的刺激-野蛮Xing爱的重要性与偷窥的艺术!你会寻求刺激的地方Zuo爱吗?聪明的Xing爱高手一定会事先观察地形地物,选择最适合的方式将剑术发挥得出神入化,才是堪称一流。像是如果在厨房,就要采取「速战速决,不要有太多的浪漫情事出现;而在明亮的灯光下,则比较适合激烈的、野蛮的
- 最新章:第4章