然后再把它和主观必然性,最后把它和合理的行为联系起来加以讨论。
B。 可信性与频率
我现在要讨论这个问题:如果已知某个ψχ、那么在什么外界条件下从
ψχ的频率中得出一个命题a 的可信性?换句话说,如果“ψχ”是“a 是
一个a”,那么在什么外界条件下从一个或更多个具有“a 的分子中有W/n 是
β。。 的分子”形式的命题中得出“a 是一个β”的可信性?我们将发现,这
个问题并不象我们应当问的那个问题那样具有普遍性,但是我们首先讨论它
还是可取的。
常识似乎明确地认为:在数学概率的典型例证中,它就等于可信度。如
果我从一副纸牌中随便取出一张纸牌,那么“纸牌是红的”的可信度恰好等
于“纸牌不是红的”的可信度,因而每一种的可信度都是1/2,如果1 代表
必然性的话。就一个骰子来说,“最上方是1”的可信度恰好等于“最上方
是2 或3,4,5,6”的可信度。因此我们可以把数学的慨率论中所有推导出
来的频率都解释为推导出来的可信度。
在把数学的概率翻译成可信度的这个过程中,我们使用了一个数学的概
率论并不需要的原理。数学的概率论只是计算各种情况;但是在这个翻译过
程中我们却必须认识到或者假定每一种情况都是同样可信的。这个原理的必
要性很久以来就已经被人认识到;人们把它叫作不充足理由原理,或者(按
照凯恩斯的说法)无差别原理。我们曾经把这个原理和凯恩斯联系在一起加
以研究,但是现在我们却必须单独来研究它。在对它进行讨论之前,我愿意
指出这个原理在数学的概率论中并不是必要的。在这种理论中,我们只需要
知道各种不同的类的数目。只有在我们把数学的概率当作可信性的尺度时我
们才需要这个原理。
我们所需要的原理大致如下:“已知一个客体a,关于它我们想知道‘a
是一个β’这个命题具有多大的可信度,并且已知我们仅有的有关知识是‘a
是一个a’,那么‘a 是一个β’的可信度就是由a 和β共有的分子数与a
的分子数之比所确定的数学概率”。
让我们再一次举一个说过的实例来说明这一点,那就是美国身材最高的
人居住在衣阿华州的机会。这里我们一方面有一个描述d,我们知道它适用
于A1,A2,。。An 有姓名的人当中的一个并且仅仅一个,其中n 是美国的居
民数。这就是说,我们知道在“d=Ar”那些命题中有一个并且仅仅一个(这
里r 是从1 到n 的数)为真,但是我们不知道是哪一个。如果这真是我们的
全部有关知识,我们就认为“d=Ar”这些命题中任何一个都和任何另外一个
同样可信。在这种情况下,每个命题都具有1/n 的可信性。如果衣阿华州有
m 个居民,“d 居住在衣阿华州”这个命题的意义就等于“d=Ar”这些命题
中m 个命题的一个析取命题,因而为它们当中任何一个命题的可信性的m 倍,
因为它们是互相排斥的。所以它具有一个由m/n 来确定的可信度。
当然在上面的实例中“d=Ar”这些命题并不都属于同一等级。证据可以
使我们把儿童和矮子,多半还把妇女除外。这就表明这个原理可能难以应用,
但是并不表明它为伪。
从一副纸牌中抽取一张纸牌的情况更接近于实现这个原理所要求的条
件。这里“d”这个描述是“我要抽出的那张纸牌”。52 张纸牌都具有可以
被我们当作名字的东西:黑桃2 等等。这样我们就有52 个“d=Ar”命题,
其中有一个并且只有一个为真,但是我们却没有任何使我们选择一个而不选
择另一个命题的证据。所以每一个命题的可信性是1/52。如果我们承认这一
点,那么它就把可信性和数学的概率联系起来。
因此我们可以提出下面的公理,作为“无差别原理”的一种可能的形式:
“已知一个描述d,关于它我们知道它适用于a1,a2,。。an 等客体中
的一个并且仅仅一个,并且已知我们不知道任何有关这个描述适用于这些客
体中哪一个的问题的知识,那么n 个‘d=ar’(1≤r≥n)的命题就都是同
样可信的,因而每个命题都有1/n 大小的可信性”。
这个公理比起一般所说的不充足理由原理来范围要狭小一些。我们必须
研究它是否充分,还要研究我们是否有理由来相信它。
让我们首先把上面的公理与上一章所讨论的凯恩斯的无差别原理比较一
下。我们记得他的原理是:相对于已知证据来说,p 和q 的概率是相等的,
如果(1)这个证据关于p 和q 是对称的,(2)p 和q 是“不可分的”,即p
和q 都不是具有与它本身形式相同的命题387 的析取命题。我们认为这种说
法可以简化如下:我们说必要的条件是p 和q 应当是一个命题函项的值,
比方说p=j q=j b j ”不应当包括或;并且如
( )和( );“ b 果这个证据有一(a) 次提到过,比方说以(x) j a 式(a)
( )的形出现,它就一定也包括(),并且反过来说jb(a) 也对,这(a) 里jx一定不再提到或。这个原b
a
理比起前一节所说的那个原理在某种程度上具有更大的一般性:它蕴涵着后
一个原理,但是我却怀疑后一个原理是否蕴涵着它。我们也许可以接受这个
更为一般的原理,并把它重述如下:
y 。其中没有一个提到过或,或者如
“已知两个命题函项j 和ab 果它们提到过或,提到的方ab(x) 式是(x) 对称的,那么在已知ya和yb的条件
下,ja和jb具有相等的可信性”。
如果我们接受这个原理,它将使我们能够从数学的概率推论出可信性,
并且使得数学概率论的全部命题可以在能够应用数学的概率论的实例上用来
确定可信度。
让我们把上面的原理应用到下面这个实例上来:一个口袋里有n 个球,
我们知道其中每一个球不是白球便是黑球;问题是:有x 个白球的概率是多
少?拉普拉斯认为x 从0 到n 的每个值都具有相同的可能性,所以一个已知
的x 的概率是1/(n+1)。从纯粹数学的观点看,这是合理的,只要我们从
这个命题函项开始:
x=白球数。
但是如果我们从这个命题函项开始:
x 是一个白球,
我们就得到完全不同的结果。就这个实例来讲,有许多选择x 个球的方
法。第一个球的选择可以有n 个方法;在选择了第一个球之后,下一个球的
选择可以有n…1 个方法,以此类推。这样选择x 个球的方法是n×(n…1)×(n…2)×。。×(n…x+1)。这是可以有x 个白球的选择方法数。为了得出
x 个白球的概率,我们必须用选择0,1,2,3 或n 个白球的方法的和去除这
个数。这个和显然是2n。所以恰好得到x 个白球的机会是用2n 去除上面这个
数而得到的。让我们把它叫作“p(n,r)”。
当n 为偶数,x=1/2n 时,或者当n 为奇数x=1/2n±1/2 时,这种机会
最大。在x 或n…x 小的时候,如果n 大,那么它的值就很小。从纯粹数学的
观点看,这两个非常不同的结果是同样合理的。但是在我们处理可信度的度
量上,它们之间的差别却很大。让我们有某种不靠颜色来分别这些球的方法;
例如,把它们从一个口袋中陆续取出来,并且让我们把第一个取出来的球叫
作d1,第二个取出来的球叫作d2,以此类推。使“a”代表“白”,
“b”代表“黑”,并且使“ja”代表“d 的颜色是白色”,“jb”代
表“d1的颜色是黑色”。证据是j 或jb为真(1) ,但不能两者都真。这是对
称的,因而根据证据ja和jb具有相(a) 等的可信性;换句话说,“d1 是白球”
和“d1 是黑球”具有相等的可信性。同样的推理也适用于d2,d3,。。dn。
这样,就每个球的情况来说,白和黑的可信度是相等的。因此,象一次简单
的计算所表明的那样,x 个白球的可信度是p(n,x),这里我们假定x 位于
0 和n 之间,并包括0 和n 在内。
我们可以看到在度量可信度上我们假定对于我们的知识来说,数据不仅
为真而且还是全部有关的东西;换句话说,我们假定除了数据中所说的东西
以外,我们就不知道任何有关的知识。所以就一个在特定时间的特定的人来
说,一个特定命题的可信度只有一个正确的值,而在数学的概率论中,对于
许多可能是完全假设
小说推荐
- 知识型仙人
- 作者:我不是伪君子第一章 灵婴降世中国中部一个不知名的小地方有一座低矮的山丘,其上绿树成荫,灌木茂盛,奇花异草无数,更有许多说不清名字的飞禽猛兽。然而远远望去,此山丘却非绿色,而是呈现出奇异的青色。此地又属平原,难得见山,附近的人就把这座土丘唤作山,名为青云山。青云山下有一个大约方圆三十里的小镇,名
- 武侠修真
- 最新章:第233章
- 超全的驾驶知识
- T形路口,请谨慎驾驶一些司机朋友对T形路口行车往往存在着模糊的认识。前几天笔者就遇到这样惊险的一幕:一辆桑塔纳轿车自南向北高速驶入一个T形路口,正遇南北红灯,轿邓净衔猅形路口直行车辆不受红灯限制,于是速度不减,直冲进路口。这时,被放行的一骑自行车的男青年正好行到车道中间,轿车司机惊慌之中一个急刹车
- 其他
- 最新章:第18章
- 知识殿堂
- 简介:带着一个星球的知识传承附身到普通的藏家小孩身上1主角名字为藏名2无爱情描写3随身流4科技知识等全是瞎编的58042第1章 吉珠)夏季,是普马乡村民一年中最期待的季节。一到了夏天,气温上去了,小孩子们可以只套件薄薄的汗衫,就能疯玩一整天。对于孩子们来说,玩耍的宝地非后山莫属。后山又叫雀儿山,山中
- 武侠修真
- 最新章:第414章
- 世界知识
- 【由文】外交动态字数:3744 习近平分别会见来京出席中俄印外长第十三次会晤的印度外长斯瓦拉吉、俄罗斯外长拉夫罗夫习近平会见斯瓦拉吉 2月2日,国家主席习近平在人民大会堂会见印度外长斯瓦拉吉 习近平请斯瓦拉吉转达对慕克吉总统和莫迪总理的亲切问候和良好祝愿。习近平指出,去年9月我访问印度期间,受到印度
- 其他
- 最新章:第36章
- sex知识讲座1
- 「他疯狂地插入、一次又一次、饥渴而粗暴的挺进来,当初的热情,谁知道现在完全翻脸不认帐,还说大家只是玩玩,不必当真,这不是欺人太甚嘛」医学上有没有办法让这个人现出原形呢 办法是有,但有此惨痛经验的学员们可能会很失望 因为由权威医学期刊「刺络针」研究指出,有些人对于性茭后6~12小时之内所发生的事情会毫
- 激情
- 最新章:第4章
- sex知识讲座3
- 「落剑式「撩剑式「荡剑式-深入传授性茭体位的48式变化!Xing爱动作是不能分解的,我要提醒学员,是先有人做过这些动作,才再有动作的分类。请不要在每次的Zuo爱过程中,只选择某一动作,否则将落得「招式用罄「黔驴技穷」的难看下场。自古,Xing爱的招式派别五花八门、百家争鸣。教官深入藏经阁在"医心方"
- 激情
- 最新章:第5章
- 百度知识大全
- 百度知识大全(一)目录请问怎样有效的去除眼袋和黑眼圈?股票里为什么有的叫熊市,有的叫牛市?顾客为什么有冲动购物的表现?挂面源于哪个朝代?关闭了电脑显示屏,还会有辐射吗?关于北京奥运吉祥物的创作灵感?关于国庆的资料?关于机车发动的问题?关于李敖的简介和作品?关于南瓜灯的由来关于圣诞节的祝福语?关羽生于
- 文学名著
- 最新章:第584章
- sex知识讲座4
- 人体大餐、魔鬼屌套、肉欲横流SM让激|情狂飙-道具篇有时候失去激|情的Xing爱关系,需要用点道具来增添Xing爱情趣,有些刺激可以经由想象来达到(例如角色扮演,有些则是在最后大军压境的时候,在你的那话儿上,套上一些辅助品,有增长的、强化磨擦效果的、持久的等等发挥临门一脚的意外功能,最终目的是为了让
- 激情
- 最新章:第4章
- 知识改变异界
- 《知识改变异界》作者:福如海东正文⒈第一章 奇怪的世界我不知道自己怎么来到这个地方,但我相信,我肯定已经死了。首先,这个地方没有白天,也没有黑夜,只有无尽阴霾的天空,滚滚浓云在上空缭绕,一直灰蒙蒙,阴森森的,还时不时吹过一阵阴风,把宁静的空间,吹出一声声嘶嚎。一望无际的大地上,没有一丝生机,就连脚下
- 魔法玄幻
- 最新章:第116章