《亚里士多德的三段论》第43章


举两个例子就可以透彻地说明问题。
第一个例子:CNAabCNAbcCNIbdCIbcNAcd是一个断定命题。
我们把这个表达式化归为(1)与(2)
(1)CNAabCNIbdCIbcNAcd,(2)CNAbcCNIbdCIbcNAcd。
用同样方式,我们把(1)化归为(3)和(4)
:(3)CNAabCIbcNAcd,(4)CNIbdCIbcNAcd。
并且把(2)化归为(5)和(6)
:(5)CNAbcCIbcNAcd,(6)CNIbdCIbcNAcd。
现在最后一个表达式是一个断定命题;它是第三格的Ferison式。
在CpCqp中,以(6)代p,并以NAbc代q,我们得到(2)
,再一次应用CpCqp,以(2)代p,并以NAab代q,我们就达到了原命题。
第二个例子:CNAabCNAbcCNIcdCIbdC
…… 185
3。三段论系统的初等表达式A 371
NAad,并非一个断定命题。
如同前面的例子一样,我们把这个表达式化归为:(1)CNAabCNIcdCIbdNAad,(2)CNAbcCNIcdCIbdNAad;然后,我们把(1)化归为(3)和(4)
,并且把(2)化归为(5)和(6)
:(3)CNAabCIbdNAad,(4)CNIcdCIbdNAad,(5)CNAbcCIbdNAad,(6)CNIcdCIbdNAad。
所有以上带有一个否定前件的公式,都不是断定命题,这可以用把它们化归为只有肯定元素的情况的办法来加以证明。
表达式(3)
,(4)
,(5)和(6)都是被排斥的。
应用斯卢派斯基规则,我们从被排斥的表达式(5)和(6)得到(2)必须被排斥,并且从被排斥的表达式(3)和(4)
,得到(1)必须被排斥。
但是,如果(1)和(2)都被排斥了,那么,原表达式也必须被排斥。
第四种情况:后件是肯定的,而有些(或所有)前件都是否定的。
这个情况可以化归为第三种情况。
证明:CαCNβγ形式的表达式,在断定命题CpCNqrCpCNqCNrNAaa与CCpCNqCNrNAaCpCNqr的基础上都演绎地等值于CαCNβCNγNAaa形式的表达式,因为NAaa总是假的。
带有否定元素的所有情况就这样地穷尽地考察过了。
第五种情况:所有前件都是肯定的,而后件是一个全称
…… 186
471第五章 判定问题
肯定命题。
有几种从属情况应当加以区分:(a)
后件是Aa;这个表达式是断定的,因为它的后件是真的。
(b)
后件是Aab,而且Aab也是前件之一。
这个表达式当然是被断定的。
以下都假定Aab不作为前件出现。
(c)后件是Aab,但是没有前件是Aaf型的(f不同于a,并且,当然也不同于b)。
这样的表达式都是被排斥的。
证明:将不同于a与b的所有变项等同于b,我们只能得到以下的前件:
Aa,Aba,Ab,Ia,Iab,Iba,Ibb。
(我们不能得到Aab,因为没有前件是Aaf型的,其中f不同于a。)前提Aa,Ab,Ia,Ibb可因其是真的而略去。
(如果没有其它前提,这个表达式就被排斥,犹如在第一种情况中一样。)如果除了Iab之外还有Iba,它们之一可以省略掉,因为它们彼此是等值的。
如果有Aba,则Iab与Iba两者都可以略去,因为Aba蕴涵着它们二者。
在这些化归之后,只有Aba或Iab能够作为前件留下来。
现在可以表明这两个蕴涵式,CAbaAab与CIabAab,根据我们的排斥公理都是被排斥的:
X。
pAcb,qAba,rIac,SAab×C27—108'108。
CAabAbaCKAcbAabIac(X。
CKpqrCsqCKpsr;
108×CP109—P5927。
CKAcbAbaIac)
…… 187
3。三段论系统的初等表达式A 571
P109。
CAabAbaP109×P110。
baab' P10
CAbaAab。
如果CAbaAab被排斥,则CIabAab必定也被排斥,因为Iab是比Aba更弱的前提。
(d)后件是Aab并且有Aaf型的前件(其中f不同于a)。
如果有一个由a导至b的系列,根据公理3(Barbara式)
这个表达式被断定;如果没有这样的系列,这个表达式就被排斥。
证明:我把一个由a导至b的系列了解为一个有序的全称肯定前提的序列:
Aac1,Ac1c2…,Acn1cn,Acnb,C序列的第一项有a作为它的第一个变元。
最后一项有b作为它的第二个变元。
而每一个其它项的第二个变元都与它的后承者的第一个变元相同。
很明显,从这样一个表达式的序列,重复应用Barbara式就得出Aab。
所以,如果有一个从a导至b的系列,这表达式就被断定;如果没有这样的系列,我们能消去Aaf型的前提(将它们的第二个变元等同于a)
,用这种方法这表达式被化归为从属情况(c)
,而它已是被排斥的。
第六种情况:所有前件都是肯定的,而后件是一个特称肯定命题。
这里我们也必须区分几种从属情况。
(a)后件是Ia;这表达式是被断定的,因为它的后件是真的。
(b)后件是Iab,而出现为前件的或是Aab,或Aba,或Iab,或Iba;很显然,在所有这些情况,这表达式必须被断定。
以下都假定以上四者都不作为前件出现。
…… 188
671第五章 判定问题
(c)
后件是Iab,而没有前件是Afa型的(f不同于a)
,或者是Agb型的(g不同于b)这表达式是被排斥的。
证明:我们把所有不同于a,b的变项都等同于c;于是在Acc或Icc型的真前提之外,我们只得到以下前件:
Aac,Abc,Iac,Ibc。
Aac蕴涵Iac,而Abc蕴涵Ibc。
所以,前提的最强的组合是Aac与Abc。
然而,从这个组合,不会得出Iab,因为公式
CAacCAbcIab等值于我们的排斥公理。
(d)
后件是Iab,并且在前件之中有Afa型(f不同于a)
的表达式,而没有Agb型(g不同于b)
的表达式。
如果有Abe或Ibe(Ieb)
,并且有一个从e导至a的系列:(α)Abe;Ae1,Ae1e2,…,Aena,(β)
Ibe;Ae1,Ae1e2,…,Aena我们从(α)
得到Abe与Aea,从而用Bramantip式得到Iab,而从(β)
得到Ibe与Aea,从而用Dimaris式得到Iab。
在两种情况中,这表达式都是被断定的。
然而,如果不满足条件(α)
和(β)
,我们能够消去Afa型的前提(用把它们的第一个变元等同于a的办法)
,根据从属情况(c)
,这表达式必须被排斥。
(e)后件是Iab,并且在前件之中有Agb型(g不同于b)的表达式,而没有Afa型(f不同于a)的表达式。
这个情况能够化归为从属情况(d)
小说推荐
返回首页返回目录