《亚里士多德的三段论》第50章


三段论(g)
,正确地译成符号“语言”将具有这样的形
①《前分析篇》,i。
15,34a17,“………从某个事物的存在并不能必然地推出任何东西,而至少要从两个事物的存在,例如,当两个前提按照所述三段论的那种方式联结起来的时候,才能必然地推出什么来。”
②《后分析篇》i。
3,73a7,“已经证明,举出一个事物——不论是一个词项或一个前提——决不包含一个必然的结论。
两个前提对于推出一个结论,从而更加是,对于论证的三段论科学是最初的和最少的基础。“
③《前分析篇》,i。
2,25a20。
④参阅第5节。
⑤亚历山大,208,16。
…… 216
402第六章 亚里士多德的模态命题逻辑
式:(h)LCKAbaAcbAca,它的语言表达式就是:(i)
这是必然的,(如果每一个b是a,并且每一个c是b,那末,每一个c必定是a)。
在三段论之前的必然性记号表明,不是结论,而是前提和结论之间的联系是必然的。
亚里士多德会断定(h)。
而公式(j)CKAbaAcbLAca,在字面上相当于语言表达式(g)
,但这个公式却是错误的。
亚里士多德排斥了这个公式,正如他排斥带有更强的前提的公式一样,即(k)CKAbaLAcbLAca,也就是:“如果每一个b是a,并且必然地每一个c是b,那末,必然地每一个c是a”。

通过将必然性化归为全称量词,公式(h)可以改变为表达式:(1)abcCKAbaAcbAca,‘即:“对于任何a,对于任何b,对于任何c,(如果每一个b是a,并且每一个c是b,那末,每一个c是a)”。
这最后的表达式等值于没有量词的Barbara式:(m)CKAbaAcbAca,因为一个全称量词当放置在断定了的公式之前时,是可以省
①《前分析篇》,i。
9,30a23“如果前提AB不表示必然性,而BC表示必然性,那末,就不会得出关于必然属于的结论。”
…… 217
41。命题之间的必然联系A 502
略的。
公式(h)和(m)并不等值。
显然,(m)可以根据CLp的原则而从(b)推演出来,而相反的推演过程却不能不将必然性化归为全称量词。
但是,如果将上述公式应用于具体词项的话,这种推演终究是不可能作到的。
例如,在公式(h)中,我们用“鸟”代替b,用“乌鸦”代替a,用“动物”代替c,我们得出必然命题:(n)这是必然的:(如果每一只鸟是乌鸦,并且每一个动物是鸟,那末,每一个动物是乌鸦)。
从(n)又得出三段论(o)
:(o)如果每一只鸟是乌鸦,并且每一个动物是鸟,那末,每一个动物是乌鸦。
但我们却不能通过将必然性变为量词而从(o)得出(n)
,因为(n)不包含可以被量化的变项。
这里我们就遇到了第一个困难。
当函子L加在包含自由变项的断定了的命题之前,必然性的意义是容易了解的。
在这种情况下,我们有一个一般定律,并且,我们可以说:我们将这个定律看作必然的,因为它对于一定种类的任何客体都是真的,而且不允许有例外。
但是当我们有一个缺少自由变项的必然命题,特别是当命题是一个由假的前件和假的后件所组成的蕴涵式,如我们所举的(n)的例子那样,我们应当怎样去解释必然性呢?
我认为只有一个合理的回答:我们可以说,如果谁接受了这个三段论的前提,那末,他就必然地要被迫接受它的结论。
但是,这是一种心理学上的必然性,它与逻辑学是迥然不同的。
除此以外,谁会将显然假的命题断定为
…… 218
602第六章 亚里士多德的模态命题逻辑
真,这是很值得怀疑的。
我不知是否有比去掉在断定了的蕴涵式之前的L函子更好的补救方式去排除这个困难。
这种方法已经为亚里士多德所采用,他有时就省略了有效的三段论式中的必然性符号。
42。
“实质”蕴涵还是“严格”蕴涵?
A按照麦加拉的菲罗的意见,蕴涵式“如果p,那末q”
,即Cpq,是真的,当且仅当它不是从真的前件开始和以假的后件结尾。
这也就是现今在古典命题演算中普遍接受的所谓“实质”蕴涵。
“严格”蕴涵:“这是必然的:如果p,那末q,”即LCpq,乃是一个必然的实质蕴涵式,它是由C。
I。
刘易士引入符号逻辑中的。
借助于这些术语,我们所讨论的问题,可以这样来陈述:我们应将亚里士多德的扩展定律的前件解释为实质蕴涵呢?
还是解释为严格蕴涵?
换句话说就是:我们应当接受较强的公式18和19(我称这为强的解释)
,或者我们应当排斥它们,而采用较弱的公式43和44(弱的解释)?
亚里士多德自然没有意识到这两种解释之间的区别和它们对模态逻辑的重要性。
他不可能了解由菲罗所提出的实质蕴涵的定义。
但是亚里士多德的注释者亚历山大却非常了解斯多亚—麦加拉学派的逻辑学,并且熟悉在这个学派的后继者中对蕴涵的意义所进行的热烈的争论。
我们现在来看亚历山大对我们这个问题所作的注释。
亚历山大在注释亚里士多德“如果(如果α存在,则β必须存在)
,那末,(如果α是可能的,则β必须是可能的)“这一段时,强调了”如果α存在,则β必须存在“这个前提的必
…… 219
42。
“实质”蕴涵还是“严格”蕴涵?
A 702
然的性质。
因此看来,他定会采用较弱的解释CLCαβCMαMβ和较弱的M扩展定律CLCpqCMpMq。
但是,他所指的必然蕴涵的意思和刘易士所认为的严格蕴涵之间是有区别的。
他说,在一个必然蕴涵中,后件应当总是(即在任何时候)从前件推出来,因此命题“如果亚历山大存在,他就有若干岁”
,就不是一个真的蕴涵式,甚至当陈述这个命题时,亚历山大事实上是这么多岁数,这个蕴涵式也不是真的①。
我们可以说,这个命题表达得不够严格,并且为了使它永真,需要补充一些时间性的限定。
一个真的实质蕴涵,当然应当是永真的,而如果它包含了变项,则对变项的所有的值都须是真的。
亚历山大的注释与强的解释不是不相容的;它无助于解决我们的问题。
如果我们将第40节所阐述的亚历山大对M扩展定律所作的证明中的实质蕴涵Cpq,代之以严格蕴涵LCpq,问题就得到了某些解决。
这样来改变公式31。
CMpCpqNLNq,我们就得出:45。
CMpCLCpqNLNq。
从公式31我们可以容易地推出CMpNLNp,方式是依靠替代qp,得出CMpCpNLNp,从这个公式依靠交换法和分离法'①亚历山大,176,2。
“必然的推论是这样的:它不具有时间的性质,而在它的表达式中,‘这个前提推出’与表达式‘这个前提有后件’永远表示同样的意思。
例如,如果我们说:‘如果亚历山大存在,那末就说亚历山大’,或者‘如果亚历山大存在,那末他就有若干岁’,就不是真的蕴涵式,即令在我们陈述这个命题的时刻,他是有若干岁“。
…… 220
802第六章 亚里士多德的模态命题逻辑
就得出我们的命题,因为Cpp乃是一个断定了的蕴涵式。
但是这同一的方法却不能运用于公式45。
我们得出CMpCCLCpNLNp;而如果我们希望?
小说推荐
返回首页返回目录