《亚里士多德的三段论》第57章


没有真正的理由可以用来反对这个系统。
我们也将看到,这个系统排斥了所有关于模态逻辑所引出的错
…… 249
50。必然性和模态逻辑的四值系统A 732
误推论,解释了亚里士多德模态三段论中的困难,并且揭示了一系列意外的、对于哲学具有重大意义的逻辑事实。
50。必然性和模态逻辑的四值系统A在第六章结尾时指出过两个重大的困难:第一个是与亚里士多德承认有断定的必然命题相联系,第二个是与他承认有断定的偶然命题相联系,现在让我们解决第一个困难。
如果将所有分析命题都看作是必然真的命题,那末,最典型的分析命题——同一性原则Fx——也应当看作是必然真的命题。
正如我们已经看到的那样,这就会导致这样错误的结论,即任何两个个体,如果它们是同一的,它们就必然是同一的。
这个结论是不能从我们的模态逻辑系统推论出来的,因为可以证明:在这个系统中任何一个必然命题都不是真的。
由于这个证明是建立在扩展定律CCpqCLpLq的基础上的,我们必须首先证明,这个定律是从我们的系统推出的。
公理51的结果要这样表述:6。
CδCpqCδpδq。
从6式通过替代δM‘推出公式:'67。
CMCpqCMpMq,而从67式通过CCpqMCpq,公理4的替代,和借助于假言三段论,我们得出较强的M-扩展定律:19。
CpqCMpMq。
较强的L-扩展定律CCpqCLpLq是通过易位从19式推出的。
在第42节中所遗留下未获解决的问题,即亚里士多德的扩
…… 250
832第七章 模态逻辑系统
展定律的较强的或较弱的解释应该容许哪一个的问题,这样得到了有利于较强的解释的解决。
任何必然命题都不是真的,这个证明现在将以充分精确的形式作出;前提:
P6。
CpLp18。
CpqCLpLq3。
CpCqrCqCpr68。
CpqrCqr推演:
68。
rCLpLq×C18—69'69。
CqCLpLq
3。
pq,qLp,rLq×C69—70'70。
CLpCqLq
70。
pα,qp×CP71—P6' ' P71。
Lα希腊字母的变项α需要作些解释。
公式70的后件CqLq,它与排斥的表达式CpLp同义,按照我们的规则,允许排斥前件Lp以及对Lp的任何替代。
但是,这不能依靠PLp来表达,因为从一个排斥的表达式通过替代不能得出任何东西。
例如,Mp是被排斥的,但是MCp——一个Mp的替代式——却是被断定的。
为了表达70式的前件对于L的任何主目都是被排斥的,我使用希腊字母(称之为“解释变项”)以便与用拉丁字母标志的“替代变项”相区别。
因为命题α可以给予任何解释,PLα代表一个一般的定律,并且表示,任何以L起始的表达式,即任何必然命题,都是应当被排斥的。
…… 251
50。必然性和模态逻辑的四值系统A 932
这个结果,PLα通过L的真值表得到证明,这个L真值表是由N和M的真值表按照L的定义建立起来的。
每个人在看到M9表之后都可以发现,L只以2和0作为自己的真值,而从来不以1为自己的真值。
由于运用模态逻辑于同一性原理而得出错误结果的问题,现在就容易得到解决了。
因为LFxx作为一个必然命题,不能被断定,它就不能用分离法从前提(t)CFXyCLFxLFxy或
CLFxCFxyLFxy引伸出结论:(v)
CFxyLFxy。
用真值表的方法的确可以证明(t)应予断定,因为它永远得1,但(v)却应当是被排斥的。
由于同一性原则Fxx是真的,即Fx=1,因此,我们就得出LFx=2,和CFxyCLFxLFxy=CFxyC2LFxy。
表达式Fxy可以具有1,2,3或0四个值中的任何一个值。
如果Fxy=1,那末,CFxyC2LFxy
=C1C2L1=C1C2=C1=1,如果Fxy=2,那末,CFxyC2LFxy
=C2C2L2=C2C2=C21=1,如果Fxy=3,那末,CFxyC2LFxy
=C3C2L3=C3C20=C3=1,如果Fxy=0,那末,CFxyC2LFxy
=C0C2L0=C0C20=C03=1。
可见,(t)
是被证明的,因为它的真值化归的最后结果总是1。
相反,(v)
是被否证的,因为我们有:当Fxy=1时,CFxyLFxy=C1L1=C12=2。
…… 252
042第七章 模态逻辑系统
当奎因问到什么是下面推理中的错误时①,提供了上述困难的有趣并且有益的例子:(a)晨星必然和晨星同一。
(b)
但是昏星并不必然和晨星同一(只是事实上与它同一)。
(c)但是同样一个客体不能具有矛盾的属性(不能是A又不是A)。
(d)所以,晨星和昏星是不同的客体。
由我们的系统对这个困难所提供的解决是非常简单的。
这个推理是错误的,因为前提(a)和(b)不是真的,而不能被断定,因此结论(d)不能从(a)和(b)推出,虽然事实上,蕴涵式C(a)
C(b)
(d)是正确的(第三个前提作为真的前提可以省去)。
上述蕴涵式可以用下述方式证明:用x表示晨星,而用y表示昏星,那末,(a)是LFx,(b)是NLFyx,它与NLFxy等值,(因为同一是一种对称关系)
,而(d)是NFxy。
这样,我们就得出公式CLFxCCNLFxyNFxy,它是真的断定命题(t)的一个正确的变形。
奎因所提出的例子现在可以借助我们的四值真值表用下述方式来验证:如果“x”和“y”的意义同上,那末,Fx=Fxy=1;从而LFx=LFXy=L1=2,NLFXy=N2=3和NFXy=N1=0,因此,按照CLFxCNLFxyNFxy,我们有C2C30=C2=1。
这个蕴涵式是真的,但由于它的两个前提并
①我从坎特伯雷大学学院(新西兰,克赖斯彻奇)哲学系复写出版的“逻辑注释”
(Logic
Notes)
(160)
中找到这个例子,这本书是由普莱奥尔(A。
N。
APrior)教授寄给我的。
…… 253
51。成对的可能性A 142
非都是真的,所以,结论可能是假的。
我们将在下面一章看到,类似的困难是亚里士多德与他的朋友德奥弗拉斯特斯和欧德谟斯之间展开争论的主要原因。
关于“任何一个必然命题都不是真的”
这个重要发现的哲学涵义,将在第62节中阐述。
51。成对的可能性A我在第49节中提到,有两个函子,它们都可以代表可能性。
我用M标志其中的一个,并且用等式将它定义为(α)M(a,b)=(Sa,Vb)=(a,Cb)
,我用等式将另一个函子定义为(β)W(a,b)=(Va,Sb)=(Ca,b)
,我用W标志它,这个W看起来好象反过来的M。
按照这个定义,W的真值表是M10,并且可以简化为M11。
虽然W与M有区别,但它证实了与M所证实的同样结构的公理,因为CpWp用M11得到证明,正如CpMp用M8得到证明一样,而PCWpp和PWp
小说推荐
返回首页返回目录