释我们把可能值限于有理数;这是一个我将在以后讨论的问题。)
III。如果h 蕴涵p;那么p/h=1。(我们用“1”表示必然性。)
IV,如果h 蕴涵非p;那么p/h=0。(我们用“0”表示不可能性。)
V。p 和q在已知h的条件下的概率等于p在己知h的条件下的概率乘以q
在已知h 的条件下的概率,也等于q 在已知h 的条件下的概率乘以P 在已知
q 和h 的条件下的概率。
这叫作“合取”公理。
VI。p 和/或q在已知h的条件下的概率是p在已知h的条件下的概率加。
q 在已知h 的条件下的概率减去p 和q 在已知h346 的条件下的概率。
这叫作“析取”公理。
就我们的目的来说,这些公理是否都是必要的并没有什么要紧;我们所
关心的只是它们是充分的。
关于这些公理有几点需要注意。显然II、III 和IV 部分地体现了容易改
变的惯例。如果采用了它们,而一个已知概率的约量是X,那么我们就同样
有理由采用任何随着X 的增长而增长的数f(x)作为约量:我们可以用f(1)
① 关于“解释”,看第四部分第一章。
① 哲学杂志“精神”,新第210 号,第98 页。
和f(O)替换III 和IV 中的1 和0。
按照上面的公理,一个与件为真则必真的命题,相对于与件来说,具有
概率1;一个与件为真则必伪的命题,相对于与件来说,具有概率0。
重要的是看到我们的基本概念p/h 是两个命题的一种关系(或者命题的
合取),而不是一个单一命题的一种性质。这就把数学计算中的概率与作为
实际生活指南的概然性区分开来,因为后者只能属于一个本身独立存在的命
题,或者至少属于一个相对于不是任意选定,而是受我们知识的问题和性质
决定的与件的命题。与此相反,在概率计算中,与件h 的选定完全是任意的。
公理V 是“合取”公理。它提供的机会是两个事件中每个都会发生。例
如:如果我从一副纸牌中抽出两张牌来,它们都是红牌的机会是多少?这里
“h”代表一副纸牌由26 张红牌和26 张黑牌组成这个与件;“p”代表“第
一张牌是红牌”这句活,而q 代表“第二张牌是黑牌”这句话。那么“(p
和q)/h”就是两张牌都是红牌的机会,“p/h”是第一张牌是红牌的机会,
“q/(p 和h)”是在已知第一张牌是红牌的条件下,第二张牌是红牌的机会。
显然“p/h=1/2,q/(p 和h)=25/51。这样根据本公理,两张牌都是红牌
的机会是1/2×25/51。
公理VI 是“析取”公理。就上面的实例来看,它提供的机会是这两张牌
中至少有一张牌是红牌。它说至少有一张红牌的机会等于第一张牌是红牌的
机会加上第二张牌是红牌的机会(在不知道347 第一张牌是红牌还是不是红
牌的情况下)减去两张牌都是红牌的机会。
这等于12 十13 — 12 ×2551,它采用了上面使用合取公理所取得的结
果。
可以明显看出,已知任何有限的事件集合的各自概率,通过公理V 和公
理VI,我们能够计算出它们都出现,或者它们当中至少有一个出现的概率。
根据合取公理我们得出:
p/ qh =
(p/h ×( ( 和))qph
(和)
q/h
这叫作“逆概率原理”。它的用处可以举例说明如下。设p 为某种一般理论,
q 为一个与p 相关的实验与件。那么p/h 就是在前所已知的与件下理论p 的
概率,q/h 就是在前所已知的与件下q 的概率;q/(p 和h)就是当p 为真时q
的概率。这样理论P 在已经发现q 以后的概率等于p 先前的概率乘以q 在已
知p 的条件下的概率,并除以q 先前的概率。在最有用的情况下,理论p 将
是一个蕴涵q 的理论,结果q(p 和h)=1。在这种情况下。
p/ qh =
q/h
。
(和)
p/ h
这就是说,新的与件q 使p 的概率按照与q 的先在的不大可能性成比例的方
式增加。换句话说,如果我们的理论蕴涵某种非常令人惊奇的事物,而这种
令人惊奇的事物后来被人发现存在,这就大大增加了我们的理论的概率。
这个原则可以拿发现海王星作例来说明,把它当作万有引力定律的证
实。这里p=引力定律,h=在发现海王星之前所有有关事实,q=在某一地点
发现海王星这件事实。这样q/h 就是一个至今尚未发现的行星将在某一小的
天体领域内被发现的先在概率。让我们用m/n 来表示它。那么在海王星被发
现之后,引力定律的概率为以前的n/m 倍那样大。
从判断新的证据对于一种科学理论的概率的关系上来说,这个原则显然
是很重要的。可是我们将发现结果却有些令人失望,不能产生可以期待的好
的结果。
有一个重要的命题,有时叫作贝那士定理,内容有如下述:设P1,P2,。。
Pn 为n 个互相排斥的可能,我们知道其中某一个为真;设h 为一般与件,q
为某件有关的事实。我们想知道一种可能p,在已知q 的条件下的概率,如
果我们知道对于每个r 来说,每一pr 在尚未知道q 时的概率以及q 在已知
Pr 的条件下的概率。我们有
n
Pr/ qh q/ (pr h pr/h ) / 。(( pr,和)·pr /h )
(和)=(和)·qh
1
这个命题使我们能够,比方说,解决下面的问题:我们已知n+l 个口袋,其
中第一个口袋装有n 个黑球,没有白球,第二个口袋装有n…个黑球和一个白
球,第r+1 个口袋装有n…r 个黑球和r 个白球。选出一个口袋,但是我们并
不知道是哪一个;从中取出m 个球,发现都是白的;那么第r 个口袋被选中
的概率是多少?从历史上来看,这个问题的重要是因为它与拉普拉斯自称的
归纳证明有关。
再看柏诺利的大数定律。这个定律说,如果在许多场合当中每一个场合
发生某一个事件的机会是p;那么,在已知不管多么小的任意两个数δ和ε的
条件下,从某一定数目的场合往后,发生这个事件的场合的多少与p 的差将
永远大于ε的机会小于δ。
让我们拿抛掷钱币作例来说明。我们假定出正面和反面具有同样的概
率。
我说在你已经掷过不少次之后,出正面的机会与
12
的差非常可能将不会超过
ε,不管ε可能多么小;我还说不管ε可能多么小,在第n 次抛掷之后,无
论在什么地方出现这样一个差别的机会小于δ,只要n 足够大。
由于本命题在概率的应用上有着很大的重要性,比方说对于统计,所以
让我们多费一点时间,就上面这个抛掷钱币的实例来说,弄清楚本命题所说
的意思到底是什么。让我们说,我先断言从某点往后,钱币出正面的百分比
将永远保持在49 与51 之间。你349 不同意我的说法,于是我们决定在可能
范围内用经验的方法就它进行试验。这个定理断言我们进行的时间越久,我
们就越有可能发现我的说法有事实根据,并且随着抛掷次数的增加,这种可
能就越来越接近必然性这个极限。我们将假定,实验让你相信从某点在后,
出正面的百分比永远保持在49 与51 之间,但是我现在说从某个更靠后的点
往后,它将永远保持在49。9 与50。1 之间。我们重做这种实验,过了一段时
间之后你又一次被说服,虽然时间可能要比以前长一些。经过任何已知数目
的抛掷之后,我的主张有着可能不被证实的机会,但是这种机会随着抛掷次
数的增加而减少,并且可以通过相当持久继续这样做下去而变得小于任何指
定的机会,不管它多么小。
上面的命题容易从那些公理演绎出来,但是当然不能用经验的方法充分
得到试验,因为这涉及到无限级数。如果我们所能进行的试验看来已经证实
了它,反对者永远可以说,如果我们接着进行下去,结果就可能不是这样;
如果我们所能进行的试验看来不能证实它,支持这个定理的人同样可以说,
我们继续做的试验还不够多。所以这个定理既不能被经验界的证据证实,也
不能被它否证。
上面是对于我们的讨论有着重要关系的纯粹概率论中的一些主要命题。
对于n+1 个口袋,每个口袋装有n 个球,其中一些是白球,另外一些是黑球,
第r+l 个口袋装有r 个白球和n…r 个黑球这个题目我还想再说几句话。下面
是与件:我知道这些口袋装有不同数目的白球和黑球,但从外面看却没有办
法把它们区分开来。我随?
小说推荐
- 知识型仙人
- 作者:我不是伪君子第一章 灵婴降世中国中部一个不知名的小地方有一座低矮的山丘,其上绿树成荫,灌木茂盛,奇花异草无数,更有许多说不清名字的飞禽猛兽。然而远远望去,此山丘却非绿色,而是呈现出奇异的青色。此地又属平原,难得见山,附近的人就把这座土丘唤作山,名为青云山。青云山下有一个大约方圆三十里的小镇,名
- 最新章:第233章
- 超全的驾驶知识
- T形路口,请谨慎驾驶一些司机朋友对T形路口行车往往存在着模糊的认识。前几天笔者就遇到这样惊险的一幕:一辆桑塔纳轿车自南向北高速驶入一个T形路口,正遇南北红灯,轿邓净衔猅形路口直行车辆不受红灯限制,于是速度不减,直冲进路口。这时,被放行的一骑自行车的男青年正好行到车道中间,轿车司机惊慌之中一个急刹车
- 最新章:第18章
- 世界知识
- 【由文】外交动态字数:3744 习近平分别会见来京出席中俄印外长第十三次会晤的印度外长斯瓦拉吉、俄罗斯外长拉夫罗夫习近平会见斯瓦拉吉 2月2日,国家主席习近平在人民大会堂会见印度外长斯瓦拉吉 习近平请斯瓦拉吉转达对慕克吉总统和莫迪总理的亲切问候和良好祝愿。习近平指出,去年9月我访问印度期间,受到印度
- 最新章:第36章
- 知识殿堂
- 简介:带着一个星球的知识传承附身到普通的藏家小孩身上1主角名字为藏名2无爱情描写3随身流4科技知识等全是瞎编的58042第1章 吉珠)夏季,是普马乡村民一年中最期待的季节。一到了夏天,气温上去了,小孩子们可以只套件薄薄的汗衫,就能疯玩一整天。对于孩子们来说,玩耍的宝地非后山莫属。后山又叫雀儿山,山中
- 最新章:第414章
- sex知识讲座1
- 「他疯狂地插入、一次又一次、饥渴而粗暴的挺进来,当初的热情,谁知道现在完全翻脸不认帐,还说大家只是玩玩,不必当真,这不是欺人太甚嘛」医学上有没有办法让这个人现出原形呢 办法是有,但有此惨痛经验的学员们可能会很失望 因为由权威医学期刊「刺络针」研究指出,有些人对于性茭后6~12小时之内所发生的事情会毫
- 最新章:第4章
- sex知识讲座4
- 人体大餐、魔鬼屌套、肉欲横流SM让激|情狂飙-道具篇有时候失去激|情的Xing爱关系,需要用点道具来增添Xing爱情趣,有些刺激可以经由想象来达到(例如角色扮演,有些则是在最后大军压境的时候,在你的那话儿上,套上一些辅助品,有增长的、强化磨擦效果的、持久的等等发挥临门一脚的意外功能,最终目的是为了让
- 最新章:第4章
- 股票基本知识
- 第一节 股票的概念与特征随着经济体制改革的深化,我国股票市场也不断地发展与完善,参与股市投资的投资者日益增多,股市投资已成为一种人们愿意承担其风险的理财手段,而股票自然而然也成为了人人关心的热门话题。股票到底是什么?股票是股份证书的简称,是股份公司为筹集资金而发行给股东作为持股凭证并借以取得股息和红
- 最新章:第36章
- 知识改变异界
- 《知识改变异界》作者:福如海东正文⒈第一章 奇怪的世界我不知道自己怎么来到这个地方,但我相信,我肯定已经死了。首先,这个地方没有白天,也没有黑夜,只有无尽阴霾的天空,滚滚浓云在上空缭绕,一直灰蒙蒙,阴森森的,还时不时吹过一阵阴风,把宁静的空间,吹出一声声嘶嚎。一望无际的大地上,没有一丝生机,就连脚下
- 最新章:第116章
- sex知识讲座2
- 如何找寻Xing爱指数破表的刺激-野蛮Xing爱的重要性与偷窥的艺术!你会寻求刺激的地方Zuo爱吗?聪明的Xing爱高手一定会事先观察地形地物,选择最适合的方式将剑术发挥得出神入化,才是堪称一流。像是如果在厨房,就要采取「速战速决,不要有太多的浪漫情事出现;而在明亮的灯光下,则比较适合激烈的、野蛮的
- 最新章:第4章